skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Almesbah, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dynamic building envelopes integrated with renewable energy sources, termed Dynamic and Renewable Source Building Envelopes (DREBE), provide an innovative approach to optimizing building envelope designs. Yet, these systems are not mature enough and not widely adopted in the industry and few literature resources are employed to understand them. These systems dynamically respond and adapt to various environmental, energy, and occupancy demands for higher energy efficiency and comfort levels compared to traditional building envelopes while simultaneously producing energy. Their potential in climate change mitigation and fostering sustainable urban development warrants great attention from industry and urban planners. Especially in positive energy districts, which aim to reach net-positive energy goals through utilizing smart energy efficient building systems on the district level. This paper reviews innovative systems like dynamic photovoltaic shading devices and phase change materials and evaluates their performance by answering two research questions, what are the current DBE trends and are they feasible in achieving net-positive energy consumption? The analysis conducted reveals the dominance of solar-based dynamic renewable energy systems and a great need for alternatives. The study suggests that alternatives like wind as a renewable energy source should be studied with dynamic systems. Moreover, the study highlights current research gaps including insufficient data on long-term application and economic costs associated with such systems. To address this gap, the study suggests exploring in depth some of these systems and then branching into various combinations of dynamic envelope systems with multiple renewable or adaptive components to further enhance the overall building performance. By synthesizing the current body of literature, this paper gives insights into advancing the application of the dynamic building envelope systems and highlights their crucial role in the future of sustainable urban environments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026